Transcription

UNIVERSIDADE FEDERAL DE PERNAMBUCOCENTRO DE TECNOLOGIA E GEOCIÊNCIADEPARTAMENTO DE OCEANOGRAFIAPROGRAMA DE PÓS-GRADUAÇÃO EM OCEANOGRAFIAAndré Ricardo de Araújo LimaVariação sazonal, espacial e lunar do ictioplâncton e do microplástico nosdiferentes habitats do estuário do Rio Goiana(Resex Acaú-Goiana PE/PB)Recife/2015

André Ricardo de Araújo LimaVariação sazonal, espacial e lunar do ictioplâncton e do microplástico nosdiferentes habitats do estuário do Rio Goiana(Resex Acaú-Goiana PE/PB)Tese apresentada ao programa de pósgraduação em oceanografia comorequisito parcial à obtenção do títulode Doutor em Oceanografia Biológica.Orientador: Dr. Mário BarlettaRecife/2015

Catalogação na FonteBibliotecária Margareth Malta, CRB-4 / 1198L732vLima, André Ricardo de Araújo.Variação sazonal, espacial e lunar do ictioplâncton e do microplásticonos diferentes habitats do estuário do Rio Goiana (Resex Acaú-GoianaPE/PB) / André Ricardo de Araújo Lima. - Recife: O Autor, 2015.144 folhas, il., gráfs., tabs.Orientador: Prof. Dr Mário Barletta.Tese (Doutorado) – Universidade Federal de Pernambuco. CTG.Programa de Pós-Graduação em Oceanografia, 2015.Inclui Referências e Anexo.1. Oceanografia. 2. Séston. 3. Cunha salina. 4. América do Sul. 5.Zooplâncton. 6. Larva de peixe. 7. Microplásticos. 8. Ciclo lunar. 9. Estuáriotropical. I. Barletta, Mário. (Orientador). II. Título.UFPE551.46 CDD (22. ed.)BCTG/2015-124

André Ricardo de Araújo LimaVariação sazonal, espacial e lunar do ictioplâncton e do microplástico nosdiferentes habitats do estuário do Rio Goiana(Resex Acaú-Goiana PE/PB)Tese submetida ao curso de Pós-Graduação em oceanografia da UniversidadeFederal de Pernambuco, como requisito parcial para obtenção do Grau de Doutor.Aprovado em 25 de Fevereiro de 2015.Banca examinadora:Prof. Dr. Mário Barletta – UFPE (Orientador)Prof. Dr. Werner Ekau - ZMTProf. Dr. André Luiz Machado Pessanha – UEPBProf. Dra. Beatrice Padovani Ferreira – UFPEProf. Dr. Jonas de Assis Almeida Ramos – IFPB

Ao Cel. Marinaldo de Lima e Silva (em memória),por reconhecer que sua pequenez, a força da suahumildade, e a experiência de sua fragilidade otornaria um grande líder, cujo caráter me inspiraa prosseguir. “Só o todo poderoso”.

AGRADECIMENTOSAo Curso de Pós-Graduação em Oceanografia e ao Departamento de Oceanografia,incluindo professores e funcionários, em especial aos coordenadores do programa DraTereza C. M. de Araújo e Dra Mônica F. da Costa pelo apoio acadêmico.Ao Dr. Mário Barletta e à Dra Mônica F. da Costa pela formação científica e intelectual,incentivos e orientação; e pelo auxílio incomensurável para o desenvolvimento destetrabalho.Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) porconceder uma bolsa de Doutorado (GD-140810/2011-0), e ao projeto CNPqProc.405818/2012-2/COAGRE/PESCA, pelo apoio financeiro ao projeto.À Fundação de Amparo à Ciência e Tecnologia de Pernambuco (FACEPE/APQ–0911–108/12), também, pelo apoio financeiro ao projeto.À equipe do Laboratório de Ecologia e Gerenciamento de Ecossistemas Costeiros eEstuarinos (Dr. Mário Barletta, Dra. Monica F. Costa, Dr. David V. Dantas, Dr. Jonas deA. A. Ramos, Dr. Carlos Henrique F. Lacerda, Dra. Flávia Guebert, Guilherme V. B.Ferreira, Antônio do Santos Alves “Tota”), pela participação durante o planejamento erealização do projeto.À minha mãe, Sra Maria Lúcia Araújo, um muito obrigado pelos grandes ensinamentos,suporte e credibilidade durante minhas escolhas.À minha querida avó Josefa (Dona Nita) e as Sras Ivone, Vera, Marilza, Cristiane eAparecida por todos os elogios e apoio.Aos amigos Pollyanna S. Santos, Carlos A. Silva, Renata M. Souza, André L. Aires, MaryAranda, Suellen P. S. França, Maria C. Reges, Fernando T. Coimbra, Ricardo F. Silva,Monique Stefani, Thiago Silas e Jailma Oliveira pelos grandes incentivos e participaçãoem bons e maus momentos da minha vida.

RESUMOEstuários são considerados ambientes importantes por promover refúgio, alimentação,reprodução e crescimento, além de servir como possíveis habitats de berçário para muitasespécies de peixes. Estudos sobre os padrões de movimento da comunidadeictioplanctônica dentro do ecossistema estuarino são de grande importância para entendercomo as espécies utilizam os recursos disponíveis para completar os seus ciclos de vidaatravés das variações temporais e espaciais das diferentes fases ontogenéticas. Entretanto,a complexidade hidrodinâmica dos estuários não só influencia os organismos vivos, mastambém materiais inanimados, tais como os detritos plásticos, atuando em sua retençãoou transporte para outros ambientes. Os detritos plásticos, associados ao aumento daurbanização das bacias hidrográficas, se originam principalmente em terra devido aodescarte impróprio, acidental ou desastres naturais. Durante seu tempo na terra, no marou nos estuários, os plásticos se fragmentam em microplásticos ( 5 mm). Flutuaçõessazonais de larvas de peixes e detritos plásticos ( 5mm) e suas quantidades em relaçãoao seston (organismos vivos e partículas não-vivas) foram estudadas ao longo dogradiente de salinidade do estuário do Rio Goiana (Resex Acaú-Goiana PE/PB) (EntreAbril, 2012 até Março, 2013). Além disso, a influência lunar na distribuição de larvas depeixes, zooplâncton e detritos plásticos ( 5 mm ) em canais de maré do mesmo estuáriofoi estudada durante um ciclo lunar (Entre Abril e Maio, 2008). Os taxa mais abundantesno canal principal foram Rhinosardinia bahiensis e Harengula sp., seguidos por Trinectesmaculatus. Estes contaram 78,7% da captura total. Larvas de espécies marinhas (n 15)dominaram o sistema. A flutuação sazonal da cunha salina parece regular a distribuiçãodas larvas de peixes e de microplásticos ao longo do sistema. A densidade total demicroplásticos (26,1 itens 100 m-3) representou metade da densidade total de larvas (53,9ind. 100 m-3) e foi comparável com a densidade de ovos de peixes (32,4 ind. 100 m-3).Plásticos moles, duros, filamentos e fragmentos tintas de barco foram encontrados nasamostras (n 216). Suas origens são provavelmente a bacia de drenagem do rio, o mar ea pesca, incluindo a pesca de lagosta). Em algumas ocasiões, a densidade demicroplásticos ultrapassou a de ictioplâncton. Durante o início da estação chuvosa,zooplâncton e larvas de peixes apresentaram densidades baixas no estuário superior. Noestuário intermediário, a maior densidade de larvas de peixes coincidiu com as altasconcentrações de zooplâncton. No final da estação chuvosa, o fluxo rio abaixo foiresponsável pelo transporte do plâncton total e dos microplásticos para a região próxima

à costa. A maior quantidade de microplásticos foi observada durante o final da estaçãochuvosa (14 itens 100m-3), quando o ambiente está sob a influência de maior vazão dorio, o que induz o escoamento dos fragmentos de plásticos para o estuário inferior. Noinício da estação seca, a densidade total do plâncton aumenta rio acima. No final daestação seca, o “bloom” de zooplâncton no estuário inferior resultaram em altasdensidades de larvas (12,74 ind. 100m-3) e ovos de peixes (14,65 ind. 100m-3), indicandoque peixes marinhos utilizam a porção inferior como áreas de desova durante o verão.Além disso, Cetengraulis edentulus, Anchovia clupeoides e R. bahiensis foram as larvasde peixes mais abundantes (56.6%) em canais de maré da porção inferior do estuário,independente da fase da lua. A lua cheia teve influência positiva na densidade deGobionellus oceanicus, Cynoscion acoupa e Atherinella brasiliensis, e a lua nova emUlaema lefroyi. As luas cheia e nova também influenciaram o número de zoé e megalopade U. cordatus, e protozoé e larva de camarão Caridae, bem como o número de plásticosduros e moles de ambos os tamanhos 5 mm e 5 mm. Micro e macroplásticoscontaminaram todos os 12 canais de maré estudados. A densidade de fragmentos plásticosé similar à do terceiro táxon mais abundante, R. bahiensis (4,8 ind 100m-3). C. edentuluse R. bahiensis mostraram forte correlação com a lua quarto crescente, quando há menoszooplâncton. A lua quarto crescente também teve uma influência positiva nas altasdensidades de micro filamentos plásticos nos canais. Anchovia clupeoides, Diapterusrhombeus, U. lefroyi e microplásticos duros tiveram associação com diferentes fases dalua, ocorrendo quando copépoda calanoida, larva de Caridae e zoé de U. cordatus foramabundantes nos canais. Cynoscion acoupa, G. oceanicus e A. brasiliensis, tiveram forteassociação com a lua cheia, quando protozoé de Caridae e megalopa de U. cordatustambém estavam altamente disponíveis, bem como plásticos duros e moles 5mm, etintas de barco e plásticos moles 5mm. As fases da lua influenciaram a assembléiafaunal e a poluição por plástico, mudando suas composições entre diferentes estágios demarés dentro dos canais da porção inferior do estuário do Rio Goiana. Esses resultadosreforçam a importância do canal principal e dos canais de maré para proteção e estratégiasalimentares. Além disso, a assembleia de larvas de peixes do estuário do Rio Goianainclui muitas espécies que ocorrem no sistema como juvenis e adultos, confirmando o usodo estuário como berçário.Palavras chave: Séston. Cunha salina. América do Sul. Zooplâncton. Larva de peixe.Microplásticos. Ciclo lunar. Estuário tropical.

ABSTRACTEstuaries are considered important environments for promoting refuge, food,reproduction, growth and for being the nursery grounds of many fish species. Studies onthe movement patterns of the ichthyoplankton in an estuarine ecosystem are of greatimportance for understand how the species utilize the available resources to completetheir life cycles using the temporal and spatial variations of different ontogenetic phases.Although, the hydrodynamic complexity of estuaries not only influences the livingorganisms, but also inanimate material, such as plastics debris, acting in their retention ortransportation to other environments. Plastics debris, associated to the increasingurbanization of watersheds, originate mainly on land due to improper disposal, accidentalrelease or natural disasters. During their time at land, sea and estuaries, plastics fragmentinto microplastics ( 5 mm). Seasonal fluctuations of fish larvae and plastic debris ( 5mm) and their quantification relative to the seston (living organisms and non-livingparticles) were studied along the salinity gradient of the Goiana Estuary (Resex AcaúGoiana PE/PB) (between April, 2012 and March, 2013). Moreover, the lunar influenceon the distribution of fish larvae, zooplankton and plastic debris ( 5 mm ) in mangrovecreeks of the same estuary was studied over a lunar cycle (between April and May, 2008).The most abundant taxa in the main channel were Rhinosardinia bahiensis and Harengulasp., followed by the achirid Trinectes maculatus. These accounted for 78.7% of totalcatch. Larvae of marine species (n 15) dominated the system. Seasonal fluctuation ofsalt wedge seems to rule the larval fish and microplastics distribution along the system.Microplastics (26.1 items 100 m-3) represented half of the total fish larvae density (53.9ind. 100 m-3) and was comparable to fish eggs density (34.2 ind. 100 m-3). Soft, hardplastics, threads and paint chip fragments were found in the samples (n 216). Theirorigins are probably the drainage river basin, the sea and fisheries, including the lobsterfleet. In some occasions, the density of microplastics surpassed that of Ichthyoplankton.During the early rainy season, zooplankton and fish larvae presented low densities in theupper estuary. In the middle estuary, the higher density of fish larvae coincided with highzooplankton concentrations. In the late rainy season, the downstream flow wasresponsible for the shoreward transport of total plankton and microplastics. The highestamount of microplastics (14 items 100m-3) was observed during the late rainy season,when the environment is under influence of the highest river flow, which induces therunoff of plastic fragments to the lower estuary. In the early dry season, the turbidity dropsand the density of total plankton rises upstream. In the late dry season, the bloom of

zooplankton in the lower estuary results in summer high densities of fish larvae (12.74ind. 100m-3) and fish eggs (14.65 ind. 100m-3), indicating that marine fishes utilizes thelower portion as spawning grounds during the summer. In addition, Cetengraulisedentulus, Anchovia clupeoides and R. bahiensis were the most abundant fish larvae(56.6%) in mangrove creeks of the lower portion of the estuary, independent of moonphase. The full moon had positive influence on densities of Gobionellus oceanicus,Cynoscion acoupa and Atherinella brasiliensis, and the new moon on Ulaema lefroyi.The full and new moon also influenced the number of zoea and megalopa of U. cordatus,and protozoea and larvae of Caridae shrimp, as well as the number of hard and softplastics, both 5mm and 5mm. Micro and macroplastics contaminated all twelve creeksstudied. Their density is similar to the third most abundant taxa, R. bahiensis (4.8 ind.100m-3). Cetengraulis edentulus and R. bahiensis showed a strong correlation with thelast quarter moon, when there were less zooplankton in the creeks. Last quarter moon alsohad a positive influence on higher densities of micro-sized plastic threads. Anchoviaclupeoides, Diapterus rhombeus, U. lefroyi and micro-sized hard plastics were associatedto different moon phases, occurring when copepod calanoida, Caridae larvae and zoea ofU. cordatus were abundant in the creeks. Cynoscion acoupa, G. oceanicus and A.brasiliensis, were strongly associated to full moon, when protozoea of Caridae andmegalopa of U. cordatus were also highly available, as well as hard and soft plastics 5mm, and paint chips and soft plastics 5mm. The moon phases influenced thecomposition of the faunal assemblage, and plastic pollution by shifting them betweendifferent tidal stages into the mangrove creeks of the Goiana Estuary. These resultsreinforce the importance of the main channel and mangrove creeks for protection andfeeding strategies. In addition, the larval fish assemblage of the Goiana Estuary includesmany species that occurs in the system as juveniles and adults, confirming the use of theestuary as a nursery.Key words: Seston. Salt wedge. South America. Zooplankton. Fish larvae. Microplastics.Lunar cycle. Tropical estuary.

LISTA DE FIGURASIntrodução GeralFigura 1: Estuário do Rio Goiana. A porção superior (Área 1), intermediária (Área 2) einferior (Área 3) do estuário, onde as coletas no canal principal serãorealizadas, estão realçadas no mapa. Os pontos indicam os canais de maré daporção inferior que foram amostrados. .24Figura 2: Porção inferior do estuário do Rio Goiana. Os círculos marcam a entrada decada canal de maré. Amostragens: (1–3), lua quarto crescente; (4–6), lua cheia;(7–9), lua quarto minguante; (10–12), lua nova. Fonte: Google Earth (2014).26Figura 3: Rede de tapagem utilizada nas coletas de plâncton e fragmentos de plásticosnos canais de maré. Marés: (a) alta; (b) baixa. Fonte: LEGECE. .27Capítulo 1: Seasonal distribution and interactions between plankton and microplastics ina tropical estuaryFigure 1: Goiana Estuary. (1) upper, (2) middle and (3) lower portions of theestuary. Source: Google Earth (2014). 42Figure 2: (a) Monthly rainfall rates and salinity, water temperature ( C), and dissolvedoxygen (mg L -1) means ( S.D.) in surface ( ) and bottom ( ) waters for thethree areas (upper, middle, lower) of the Goiana Estuary from April 2012 toMarch 2013. 45Figure 3: Total mean ( S.E.) density of seston (fish larvae, fish eggs, zooplankton,microplastics) in different depths [( ) surface; ( ) bottom] of the three areas ofthe Goiana Estuary (upper; middle; lower) for each season (early and late dry;early and late rainy). 49Figure 4: Total mean ( S.E.) density of fish larvae species in different depths [( )surface; ( ) bottom] of the three areas of the Goiana Estuary (upper; middle;lower) for each season (early and late dry; early and late rainy). 52Figure 5: Total mean ( S.E.) density of fish eggs in different depths [( ) surface; ( )bottom] of the three areas of the Goiana Estuary (upper; middle; lower) foreach season (early and late dry; early and late rainy). 53Figure 6: Canonical correspondence analysis (CCA) triplot for the ecologicalcorrelations between the plankton and the environmental variables. Circles ( )represent the three areas (U, upper; M, middle; L, lower) of the main channel

of Goiana estuary in each season [(a) Rainy season: ER, early rainy; LR, laterainy and (b) Dry season: ED, early dry; LD, late dry] and depth of watercolumn (S, surface; B, bottom). Triangles ( ) represent the plankton[ichthyoplankton (Aclupe, Anchovia clupeoides; Aline, Achirus lineatus;Cacou, Cynoscion acoupa; Ceden, Cetengraulis edentulus; Gocean,Gobionellus oceanicus; Hclupe, Harengula clupeola; Lnich, Lupinobleniusnicholsi; Ooglin, Opisthonema oglinum; Rbahi, Rhinosardinia bahiensis;Stelsp, Stellifer sp.; Syngsp, Syngnathus sp.; Tmacu, Trinectes asilianalarvae;Amph,amphipoda; Appen, appendicularia; Copcal, copepod calanoida; Cyr(naupli)cyrripedia larvae; Hydrom, hydromedusa larvae; Pen(larv) Penaeidae larvae;Ucord(Zoea), Zoea of Ucides cordata) and microplastics (Hard(µ), hard;Soft(µ), soft; paint(µ), paint chips; Thr(µ), threads)]. The environmentalvariables (rainfall, dissolved oxygen, salinity, temperature) were representedby arrows. ** p 0.01. 55Capítulo 2: Distribution patterns of microplastics within the plankton of a tropicalestuaryFigure 1: Goiana Estuary. (1) upper, (2) middle and (3) lower portions of theestuary. Source: Google Earth (2014). 70Figure 2: Examples of linving plankton and microplastics found in the main channel ofthe Goiana Estuary. (a) fish larvae, (b) fish eggs,(c) zooplankton (isopod), (df) hard plastic, (g-i) soft plastic, (j-l) threads, (m-o) paint. Images captured witha digital camera Canon PowerShot G10 coupled to a stereomicroscope ZEISS; STEMI 2000-C. .71Figure 3: (a) Total monthly rainfall and means ( S.D.) of (b) salinity, (c) watertemperature, and (d) dissolved oxygen in the three areas [( ) upper, ( ) middle,( ) lower] of the Goiana Estuary from April 2012 to March 2013. .74Figure 4: Cluster dendrogram based on similarities of environmental variables (rainfall,salinity, water temperature and dissolved oxygen) of the samples measured inthe Goiana Estuary. Each object corresponds to the seasons (ER, early rainy;LR, late rainy; ED, early dry; LD, late dry) areas (U, upper; M, middle and L,lower estuary) and depth of water column (S, surface; B, bottom) where the

samples were taken. Samples were clustered by group average of rankedEuclidean similarity index. I – II, groups; A, B, 1, 2, subgroups. 75Figure 5: Total mean ( S.E.) density of microplastics (hard plastic, soft plastic, threads,paint) in the different water columns [( ) surface; ( ) bottom] of the three areasof the Goiana Estuary (upper, middle, lower) for each season (early and latedry; early and late rainy). 77Figure 6: Total mean ( S.E.) density of plankton (microplastics, fish larvae, fish eggs)in different depths [( ) surface; ( ) bottom] of the three areas of the GoianaEstuary (upper, middle, lower) for each season (early and late dry; early andlate rainy). .79Figure 7: Cluster dendrogram based on similarities on the composition of the plankton(microplastics and ichthyoplankton) in the Goiana Estuary using the areas,seasons and water column as attributes. Samples were clustered by groupaverage of ranked Euclidean similarity index. I – II, groups; a, b, subgroups. .80Figure 8: Canonical correspondence analysis (CCA) triplot for the ecologicalcorrelations between microplastics, fish larvae and fish eggs and theenvironmental variables. Circles ( ) represent the three areas (U, upper; M,middle; L, lower) of the main channel of Goiana estuary in each season (ER,early rainy; LR, late rainy; ED, early dry; LD, late dry) and depth of watercolumn (S, surface; B, bottom). Triangles ( ) represent microplastics (soft andhard plastic, threads and paint chips), fish larvae and fish eggs. Theenvironmental variables (rainfall, dissolved oxygen, salinity, temperature)were represented by arrows. * p 0.05. .81Capítulo 3: Changes in the composition of ichthyoplankton assemblage and plasticdebris in mangrove creeks relative to moon phasesFigure 1: Lower portion of the Goiana Estuary. Circles mark the entrance of eachmangrove creek. Sampling: (1–3), first quarter; (4–6), full; (7–9), last quarter;(10–12), new moon. Source: Google Earth. Image accessed on 26th November2014. .96Figure 2: Examples of plankton and plastic debris found in the mangrove creeks of theGoiana Estuary. Fish larvae: (a) Gobionellus oceanicus, (b) Atherinellabrasiliensis, (c) Anchovia clupeoides; zooplankton: (d) zoea of Ucides

cordatus, (e) Megalopa of U. cordatus, (f) copepod calanoida; microplastics:(g) blue hard plastics, (h) yellow soft plastics, (i) green paint chips;Macroplastics: (j) blue threads, (k) green hard plastic, (l) white soft plastic.Images captured with a digital camera Canon PowerShot G10 coupled to astereomicroscope - ZEISS; STEMI 2000-C. .98Figure 3: Means ( S.D.) of water temperature, salinity and dissolved oxygen during thefollowing four hours after flood tide on each moon phase (first quarter, full,last quarter and new). 100Figure 4: Mean ( S.E.) of number of fish larvae and species, and mean densities ( S.E.)of fish larvae, zooplankton, microplastic and macroplastic in the mangrovecreeks of the Goiana Estuary in relation to moon phase ((, first quarter; , full;), last quarter; , new). 103Figure 5: Mean densities ( S.E.) of the most important species of fish larvae and groupsof zooplankton caught in the mangrove creeks of the lower portion of theGoiana Estuary in relation to moon phase ((, first quarter; ,full; ), lastquarter; , new). .107Figure 6: Mean densities ( S.E.) of plastics debris (micro and macroplastics) in themangrove creeks of the lower portion of the Goiana Estuary in relation to moonphase ((, first quarter; , full; ), last quarter; , new). 108Figure 7: Canonical correspondence analysis (CCA) triplot for the ecologicalcorrelations between plastics debris and (a) fish larvae, (b) zooplankton, andthe environmental variables. Circles ( ) represent moon phases ((, first quarter; ,full;),last quarter;Ichthyoplankton ,(Abrasil,new). Triangles ( ) represent the upeoides; Cacou, Cynoscion acoupa; Ceden, Cetengraulis edentulus;Drhomb, Diapterus rhombeus; Gocean, Gobionellus oceanicus; Rbahi,Rhinosardinia bahiensis; Ulefroyi, Ulaema lefroyi). Zooplankton (Carid(larv),larvae of Caridae shirimp; Carid(prot), protozoea of Caridea; descordatus;Ucord(zoea), zoeae of U. cordatus). Microplastics (Hard(µ), hard; Soft(µ),soft; Paint(µ), paint chips; Thr(µ), threads). Macroplastics (Hard(M), hard;

Soft(M), soft)] The environmental variables (dissolved oxygen, salinity,temperature) are represented by arrows. .109ConclusõesFigure 1: Modelo conceitual para a distribuição sazonal e espacial de larvas, ovos depeixes e microplásticos no estuário do Rio Goiana. .124Figure 2: Modelo conceitual para a composição do plâncton e do microplástico noscanais de maré da porção inferior do estuário do Rio Goiana em relação as fasesda lua. .126

LISTA DE TABELASCapítulo 1: Seasonal distribution and interactions between plankton and microplastics ina tropical estuaryTable 1: Density of the plankton and microplastics from the Goiana Estuary duringdifferent seasons (ER, early rainy; LR, late rainy; ED, early dry; LD, late dry)and areas (upper, middle and lower). E, estuarine; E-M, estuarine-marine; MS,mangroves; M, marine. Sub-total densities in bold. 47Table 2: Developmental stages size of the most important species catch in the mainchannel of the Goiana Estuary. 48Table 3: Summary of the ANOVA results for the mean density of plankton andmicroplastics. Analysis performed using Box-Cox transformed data.Differences among seasons, areas and water column were determined byBonferroni’s post hoc comparisons test. Seasons: ER, early rainy; LR, laterainy; ED, early dry; LD, late dry. Areas of the Goiana Estuary: UE, upper;ME, middle; LE, lower. Depth of water column: SUF, surface; BOT, bottom.ns, not significant; ** p 0.01; * p 0.05. 50Table 4: Summary of canonical correspondence (CCA) analysis using fourenvironmental variables (rainfall, water temperature, dissolved oxygen,salinity) and density of fish larvae species, fish eggs, zooplankton andmicroplastics in the main channel of the Goiana estuary. ** p 0.01. .56Capítulo 2: Distribution patterns of microplastics within the plankton of a tropicalestuaryTable 1: Density of the planktonic components (microplastics, ichthyoplankton andzooplankton) from the Goiana Estuary during different seasons (ER, earlyrainy; LR, late rainy; ED, early dry; LD, late dry) and areas (upper, middle andlower). The density of each item was adjusted to a standard volume of 100 m 3. Bold number: sub-total densities. 76Table 2: Summary of the ANOVA results for the density (n 100 m-3) of eachmicroplastics and total of microplastic, fish larvae and fish eggs. Analysisperformed on Box-Cox transformed data. Differences among seasons, areasand water column were determined by Bonferroni’s test post hoc comparisons.Seasons: ER, early rainy; LR, late rainy; ED, early dry; LD, late dry. Areas of

the Goiana Estuary: UE, upper; ME, middle; LE, lower. Water column: SUF,surface; BOT, bottom. ns, not significant; ** p 0.01. .78Table 3: Summary of canonical correspondence (CCA) analysis using fourenvironmental variables (rainfall, water temperature, dissolved oxygen,salinity) and density of microplastics (soft and hard plastic, threads and paintchips), fish larvae and fish eggs groups in the main channel of the Goianaestuary. * p 0.05; ** p 0.01. .82Capítulo 3: Changes in the composition of ichthyoplankton assemblage and plasticdebris in mangrove creeks relative to moon phasesTable 1: Density of the main plankton components (fish larvae, zooplankton, and plasticdebris) from the mangrove creeks of the Goiana Estuary during different moonphases. E, estuarine; E-M, estuarine-marine; MS, mangroves; M, marine. Subtotal densities in bold. .101Table 2: Developmental stages size of the most important fish larvae species catch in themangrove creeks of Goiana Estuary. .104Table 3: Summary of ANOVA results for the mean density of total plankton, fish larvae,zooplankton and plastic debris. Analysis performed using Box-Coxtransformed data. Differences among moon phases were determined byBonferroni’s post hoch comparisons test. Moon phases: Fi, first quarter; Fu,full moon; La, last quarter; Ne, new moon. * p 0.05; ** p 0.01. 105Table 4: Summary of canonical correspondence analysis (CCA) using threeenvironmental variables (water temperature, dissolved oxygen and salinity),the moon phases and the densities of fish larvae, zooplankton and plastic debrisin the mangrove creeks of the Goiana estuary. Ns, non-significant. .111

Sumário1.Introdução . 192.Objetivos. 223.2.1.Objetivo geral . 222.2.Objetivos específicos . 22Materiais e métodos . 233.1. Área de estudo . 233.2. Métodos amostrais . 243.2.1. Amostragem do seston no canal principal . 243.2.2. Amostragem do seston nos canais de maré . 253.3. Procedimentos laboratoriais . 263.4. Análise estatística . 283.4.1. Variação sazonal e especial do plâncton e do microplástico no canalprincipal . 283.4.2. Influencia lunar na composição do plâncton e detritos plásticos nos canais demaré . 294.Estrutura da tese.

AGRADECIMENTOS Ao Curso de Pós-Graduação em Oceanografia e ao Departamento de Oceanografia, incluindo professores e funcionários, em especial aos coordenadores do programa Dr a Tereza C. M. de Araújo e Dr a Mônica F. da Costa pelo apoio acadêmico. Ao Dr. Mário Barletta e à Dr a Mônica F. da Costa pela formação científica e intelectual,