Cesium Chloridesc-203876Material Safety Data SheetHazard Alert CodeKey:EXTREMEHIGHMODERATELOWSection 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATIONPRODUCT NAMECesium ChlorideSTATEMENT OF HAZARDOUS NATURECONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.NFPA0FLAMMABILITY1HEALTH HAZARD0INSTABILITYSUPPLIERCompany: Santa Cruz Biotechnology, Inc.Address:2145 Delaware AveSanta Cruz, CA 95060Telephone: 800.457.3801 or 831.457.3800Emergency Tel: CHEMWATCH: From within the US andCanada: 877-715-9305Emergency Tel: From outside the US and Canada: 800 24362255 (1-800-CHEMCALL) or call 613 9573 3112PRODUCT USEUsed in brewing, preparation of other caesium compounds, mineral waters, evacuation of radio tubes (positive ions supplied atsurface of filament), for a density gradient in ultracentrifuge separations, fluorescent screens, contrast medium, laboratoryreagent.SYNONYMSCs-Cl, "cesium chloride", "caesium monochloride", "dicaesium dichloride", "tricaesium trichloride"Section 2 - HAZARDS IDENTIFICATIONCANADIAN WHMIS SYMBOLSEMERGENCY OVERVIEWRISKHarmful if swallowed.Limited evidence of a carcinogenic effect.Possible risk of irreversible effects.Repeated exposure may cause skin dryness and cracking.POTENTIAL HEALTH EFFECTSACUTE HEALTH EFFECTSSWALLOWED

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram maybe fatal or may produce serious damage to the health of the individual. Cesium is distributed widely in the body, especially in the muscle. Hyperirritability and spasm represent the toxic syndromesproduced when cesium replaces potassium in the diet. This can cause death within days.EYE Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfortcharacterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material mayproduce foreign body irritation in certain individuals.SKIN Skin contact is not thought to produce harmful health effects (as classified using animal models). Systemic harm, however,has been identified following exposure of animals by at least one other route and the material may still produce health damagefollowing entry through wounds, lesions or abrasions. Good hygiene practice requires that exposure be kept to a minimum andthat suitable gloves be used in an occupational setting. Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Open cuts, abraded or irritated skin should not be exposed to this material. Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmfuleffects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.INHALED The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (asclassified using animal models). Nevertheless, adverse effects have been produced following exposure of animals by at leastone other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures beused in an occupational setting. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, mayincur further disability if excessive concentrations of particulate are inhaled. Not normally a hazard due to non-volatile nature of product.CHRONIC HEALTH EFFECTS There has been concern that this material can cause cancer or mutations, but there is not enough data to make anassessment.Prolonged or repeated skin contact may cause drying with cracking,irritation and possible dermatitis following.Exposure to the material may result in a possible risk of irreversible effects. The material may produce mutagenic effects inman. This concern is raised, generally, on the basis ofappropriate studies using mammalian somatic cells in vivo. Such findings are often supported by positive results from in vitromutagenicity studies.Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involvingorgans or biochemical systems.Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particlesless than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.Limited human data are available regarding health effects of caesium. Most studies involve radio-isotopes of caesium such as137Cs and 134Cs. These radionuclides are products of either neutron activation or nuclear fission and may, therefore, bereleased from sites where nuclear fission occurs, from radioactive material removed from such sites, or from leakage ofradioactive cesium sources. Both 137Cs and 134Cs emit beta radiation (that travels short distances and can penetrate the skinand superficial body tissues) and gamma radiation (that penetrates the entire body).Once radioactive cesium is internalised, it is absorbed, distributed, and excreted in the same manner as stable cesium. Theinternal radiation dose from cesium is a measure of the amount of energy that the beta and gamma emissions deposit in tissue.The short-range beta radiation produces a localized dose while the more penetrating gamma radiation contributes to a wholebody dose. Molecular damage results from the direct ionization of atoms that are encountered by beta and gamma radiationand by interactions of resulting free radicals with nearby atoms. Tissue damage results when the molecular damage isextensive and not sufficiently repaired in a timely manner.Section 3 - COMPOSITION / INFORMATION ON INGREDIENTSHAZARD RATINGSMinFlammability:0Toxicity:2Body Contact:1Reactivity:0Chronic:2MaxMin/Nil 0Low 1Moderate 2High 3Extreme 4NAMECAS RN%caesium chloride7647-17-8 99Section 4 - FIRST AID MEASURESSWALLOWED IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unlessinstructed otherwise:For advice, contact a Poisons Information Center or a doctor.Urgent hospital treatment is likely to be needed.If conscious, give water to drink.INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on leftside (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportivemeasures as indicated by the patient's condition.If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and acopy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy ofthe MSDS.EYE If this product comes in contact with the eyes:Wash out immediately with fresh running water.Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionallylifting the upper and lower lids.If pain persists or recurs seek medical attention.Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.SKIN If skin or hair contact occurs:Flush skin and hair with running water (and soap if available).Seek medical attention in event of irritation.INHALED If dust is inhaled, remove from contaminated area.Encourage patient to blow nose to ensure clear passage of breathing.If irritation or discomfort persists seek medical attention.NOTES TO PHYSICIAN for poisons (where specific treatment regime is -------------------BASIC --------------------Establish a patent airway with suction where necessary.Watch for signs of respiratory insufficiency and assist ventilation as necessary.Administer oxygen by non-rebreather mask at 10 to 15 l/min.Monitor and treat, where necessary, for pulmonary edema .Monitor and treat, where necessary, for shock.Anticipate seizures .DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) fordilution where patient is able to swallow, has a strong gag reflex and does not -----------------ADVANCED --------------------Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest hasoccurred.Positive-pressure ventilation using a bag-valve mask might be of use.Monitor and treat, where necessary, for arrhythmias.Start an IV D5W TKO. If signs of hypovolemia are present use lactated Ringers solution. Fluid overload might createcomplications.Drug therapy should be considered for pulmonary edema.Hypotension with signs of hypovolemia requires the cautious administration of fluids. Fluid overload might createcomplications.Treat seizures with diazepam.Proparacaine hydrochloride should be used to assist eye irrigation.BRONSTEIN, A.C. and CURRANCE, P.L.EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994.Treat symptomatically.Section 5 - FIRE FIGHTING MEASURESVapour Pressure (mmHG):Not applicableUpper Explosive Limit (%):Not applicableSpecific Gravity (water 1):3.97Lower Explosive Limit (%):Not applicableEXTINGUISHING MEDIA There is no restriction on the type of extinguisher which may be used.Use extinguishing media suitable for surrounding area.FIRE FIGHTING Alert Emergency Responders and tell them location and nature of hazard.Wear breathing apparatus plus protective gloves for fire only.Prevent, by any means available, spillage from entering drains or water course.Use fire fighting procedures suitable for surrounding area.Do not approach containers suspected to be hot.Cool fire exposed containers with water spray from a protected location.If safe to do so, remove containers from path of fire.Equipment should be thoroughly decontaminated after use.GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

Non combustible.Not considered to be a significant fire risk, however containers may burn.Decomposition may produce toxic fumes of: hydrogen chloride, metal oxides.May emit poisonous fumes.FIRE INCOMPATIBILITY None known.PERSONAL PROTECTIONGlasses:Chemical goggles.Gloves:Respirator:ParticulateSection 6 - ACCIDENTAL RELEASE MEASURESMINOR SPILLS Clean up waste regularly and abnormal spills immediately.Avoid breathing dust and contact with skin and eyes.Wear protective clothing, gloves, safety glasses and dust respirator.Use dry clean up procedures and avoid generating dust.Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (considerexplosion-proof machines designed to be grounded during storage and use).Dampen with water to prevent dusting before sweeping.Place in suitable containers for disposal.MAJOR SPILLS Moderate hazard.CAUTION: Advise personnel in area.Alert Emergency Responders and tell them location and nature of hazard.Control personal contact by wearing protective clothing.Prevent, by any means available, spillage from entering drains or water courses.Recover product wherever possible.IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or othercontainers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.If contamination of drains or waterways occurs, advise emergency services.ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)AEGL 1: The airborne concentration of a substance above which it is predictedthat the general population, including susceptible individuals, couldexperience notable discomfort, irritation, or certain asymptomatic nonsensoryeffects. However, the effects are not disabling and are transient andreversible upon cessation of exposure.AEGL 2: The airborne concentration of a substance above which it is predictedthat the general population, including susceptible individuals, couldexperience irreversible or other serious, long-lasting adverse health effectsor an impaired ability to escape.AEGL 3: The airborne concentration of a substance above which it is predictedthat the general population, including susceptible individuals, couldexperience life-threatening health effects or death.Section 7 - HANDLING AND STORAGEPROCEDURE FOR HANDLING Avoid all personal contact, including inhalation.Wear protective clothing when risk of exposure occurs.Use in a well-ventilated area.Prevent concentration in hollows and sumps.DO NOT enter confined spaces until atmosphere has been checked.DO NOT allow material to contact humans, exposed food or food utensils.Avoid contact with incompatible materials.When handling, DO NOT eat, drink or smoke.Keep containers securely sealed when not in use.Avoid physical damage to containers.Always wash hands with soap and water after handling.Work clothes should be laundered separately.Launder contaminated clothing before re-use.Use good occupational work practice.Observe manufacturer's storing and handling recommendations.Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions aremaintained.RECOMMENDED STORAGE METHODS Polyethylene or polypropylene container.

Check all containers are clearly labelled and free from leaks.STORAGE REQUIREMENTS Store in original containers.Keep containers securely sealed.Store in a cool, dry, well-ventilated area.Store away from incompatible materials and foodstuff containers.Protect containers against physical damage and check regularly for leaks.Observe manufacturer's storing and handling recommendations.SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS X XX X: Must not be stored togetherO: May be stored together with specific preventions : May be stored togetherSection 8 - EXPOSURE CONTROLS / PERSONAL PROTECTIONEXPOSURE CONTROLSTWA TWA STEL STEL Peak Peak TWA Notesppm mg/m³ ppm mg/m³ ppm mg/m³ F/CCSourceMaterialUS - Oregon PermissibleExposure Limits (Z3)caesium chloride (Inert orNuisance Dust: (d) Total dust)10US OSHA Permissible ExposureLevels (PELs) - Table Z3caesium chloride (Inert orNuisance Dust: (d) Respirablefraction)5US OSHA Permissible ExposureLevels (PELs) - Table Z3caesium chloride (Inert orNuisance Dust: (d) Total dust)15US - Hawaii Air ContaminantLimitscaesium chloride (Particulatesnot other wise regulated - Totaldust)10US - Hawaii Air ContaminantLimitscaesium chloride (Particulatesnot other wise regulated Respirable fraction)5US - Oregon PermissibleExposure Limits (Z3)caesium chloride (Inert orNuisance Dust: (d) Respirablefraction)5US - Tennessee OccupationalExposure Limits - Limits For AirContaminantscaesium chloride (Particulatesnot otherwise regulatedRespirable fraction)5US - Wyoming Toxic andHazardous Substances Table Z1Limits for Air Contaminantscaesium chloride (Particulatesnot otherwise regulated(PNOR)(f)- Respirable fraction)5US - Michigan Exposure Limitsfor Air Contaminantscaesium chloride (Particulatesnot otherwise regulated,Respirable dust)5**MATERIAL DATACAESIUM CHLORIDE: It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which thereis evidence of health effects at airborne concentrations encountered in the workplace.At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced inanimal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible andoccupational exposure must be kept to a minimum.NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.PERSONAL PROTECTIONConsult your EHS staff for recommendations

EYE Safety glasses with side shieldsChemical goggles.Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them.HANDS/FEET Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:frequency and duration of contact,chemical resistance of glove material,glove thickness anddexteritySelect gloves tested to a relevant standard (e.g. Europe EN 374, US F739).When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough timegreater than 240 minutes according to EN 374) is recommended.When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60minutes according to EN 374) is recommended.Contaminated gloves should be replaced.Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of anon-perfumed moisturiser is recommended.Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids,where abrasive particles are not present.polychloroprenenitrile rubberbutyl rubberfluorocaoutchoucpolyvinyl chlorideGloves should be examined for wear and/ or degradation constantly.OTHER Overalls.P.V.C. apron.Barrier cream.Skin cleansing cream.Eye wash unit. Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.The decision to use respiratory protection should be based on professional judgment that takes into account toxicityinformation, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are notsubject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered,positive flow, full face apparatus may be an option).Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These may be government mandated or vendor recommended.Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit testedas part of a complete respiratory protection program.Use approved positive flow mask if significant quantities of dust becomes airborne.Try to avoid creating dust conditions.RESPIRATOR Protection Factor10 x PEL50 x PEL100 x PELHalf-Face RespiratorP1Air-line*Air-line**-Full-Face RespiratorP2P3Air-line*Air-line**Powered Air RespiratorPAPR-P1PAPR-P2PAPR-P3100 x PEL* - Negative pressure demand ** - Continuous flowExplanation of Respirator Codes:Class 1 low to medium absorption capacity filters.Class 2 medium absorption capacity filters.Class 3 high absorption capacity filters.PAPR Powered Air Purifying Respirator (positive pressure) cartridge.Type A for use against certain organic gases and vapors.Type AX for use against low boiling point organic compounds (less than 65ºC).Type B for use against certain inorganic gases and other acid gases and vapors.Type E for use against sulfur dioxide and other acid gases and vapors.Type K for use against ammonia and organic ammonia derivativesClass P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g.asbestos, silica.Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.The local concentration of material, quantity and conditions of use determine the type of personal protective equipmentrequired.Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonableestimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full facepressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR withauxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified forescape from the atmosphere in which they will be used.ENGINEERING CONTROLS Local exhaust ventilation usually required. If risk of overexposure exists, wear an approved respirator. Correct fit is essentialto obtain adequate protection an approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area.Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capturevelocities" of fresh circulating air required to effectively remove the contaminant.Type of Contaminant:Air Speed:solvent, vapors, degreasing etc., evaporating from tank (in still 0.25-0.5 m/s (50-100 f/min.)air).aerosols, fumes from pouring operations, intermittentcontainer filling, low speed conveyer transfers, welding, spray 0.5-1 m/s (100-200 f/min.)drift, plating acid fumes, pickling (released at low velocity intozone of active generation)direct spray, spray painting in shallow booths, drum filling,conveyer loading, crusher dusts, gas discharge (activegeneration into zone of rapid air motion)grinding, abrasive blasting, tumbling, high speed wheelgenerated dusts (released at high initial velocity into zone ofvery high rapid air motion).Within each range the appropriate value depends on:Lower end of the range1-2.5 m/s (200-500 f/min.)2.5-10 m/s (500-2000 f/min.)Upper end of the range1: Room air currents minimal or favorable to capture1: Disturbing room air currents2: Contaminants of low toxicity or of nuisance value only.2: Contaminants of high toxicity3: Intermittent, low production.3: High production, heavy use4: Large hood or large air mass in motion4: Small hood-local control onlySimple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocitygenerally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at theextraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity atthe extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within theextraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extractionsystems are installed or used.Section 9 - PHYSICAL AND CHEMICAL PROPERTIESPHYSICAL PROPERTIESSolid.Mixes with water.StateDivided solidMolecular Weight168.36Melting Range ( F)1194.8ViscosityNot ApplicableBoiling Range ( F)2377.4Solubility in water (g/L)Soluble.Flash Point ( F)Not ApplicablepH (1% solution)Not availableDecomposition Temp ( F)Not applicablepH (as supplied)Not applicableAutoignition Temp ( F)Not applicableVapour Pressure (mmHG)Not applicableUpper Explosive Limit (%)Not applicableSpecific Gravity (water 1)3.97Lower Explosive Limit (%)Not applicableRelative Vapor Density (air 1) Not available.Volatile Component (%vol)Not applicable.Evaporation RateNot applicableAPPEARANCEOdourless, colourless, transparent crystals or white crystalline powder; soluble in water and alcohol, insoluble in acetone.Section 10 - CHEMICAL STABILITYCONDITIONS CONTRIBUTING TO INSTABILITY Presence of incompatible materials.Product is considered stable.Hazardous polymerization will not occur.STORAGE INCOMPATIBILITY Metals and their oxides or salts may react violently with chlorine trifluoride. Chlorine trifluoride is a hypergolic oxidizer. Itignites on contact (without external source of heat or ignition) with recognized fuels - contact with these materials, following anambient or slightly elevated temperature, is often violent and may produce ignition. The state of subdivision may affect theresults.For incompatible materials - refer to Section 7 - Handling and Storage.Section 11 - TOXICOLOGICAL INFORMATIONcaesium chlorideTOXICITY AND IRRITATION

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.TOXICITYIRRITATIONOral (rat) LD50: 2600 mg/kgNil reported. NOTE: Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producingdamage or change to cellular DNA.Section 12 - ECOLOGICAL INFORMATIONRefer to data for ingredients, which follows:CAESIUM CHLORIDE: Although inorganic chloride ions are not normally considered toxic they can exist in effluents at acutely toxic levels (chloride 3000 mg/l). the resulting salinity can exceed the tolerances of most freshwater organisms.Inorganic chlorine eventually finds its way into the aqueous compartment and as such is bioavailable. Incidental exposure toinorganic chloride may occur in occupational settings where chemicals management policies are improperly applied. Thetoxicity of chloride salts depends on the counter-ion (cation) present; that of chloride itself is unknown. Chloride toxicity has notbeen observed in humans except in the special case of impaired sodium chloride metabolism, e.g. in congestive heart failure.Healthy individuals can tolerate the intake of large quantities of chloride provided that there is a concomitant intake of freshwater.Although excessive intake of drinking-water containing sodium chloride at concentrations.above 2.5 g/litre has been reported to produce hypertension, this effect is believed to be related to the sodium ionconcentration.Chloride concentrations in excess of about 250 mg/litre can give rise to detectable taste in water, but the threshold dependsupon the associated cations. Consumers can, however, become accustomed to concentrations in excess of 250 mg/litre. Nohealth-based guideline value is proposed for chloride in drinking-water.In humans, 88% of chloride is extracellular and contributes to the osmotic activity of body fluids. The electrolyte balance in thebody is maintained by adjusting total dietary intake and by excretion via the kidneys and gastrointestinal tract. Chloride isalmost completely absorbed in normal individuals, mostly from the proximal half of the small intestine. Normal fluid lossamounts to about 1.5?2 liters/day, together with about 4 g of chloride per day. Most (90 - 95%) is excreted in the urine, withminor amounts in faeces (4- %) and sweat (2%).Chloride increases the electrical conductivity of water and thus increases its corrosivity. In metal pipes, chloride reacts withmetal ions to form soluble salts thus increasing levels of metals in drinking-water. In lead pipes, a protective oxide layer is builtup, but chloride enhances galvanic corrosion. It can also increase the rate of pitting corrosion of metal pipes. For caesium:Environmental fate:Caesium compounds released to the atmosphere will eventually settle to earth by wet and dry deposition. Radioactive forms ofcesium such as 137Cs and 134Cs are continuously transformed to stable isotopes of barium or xenon by the natural processof radioactive decay.Caesium salts and most caesium compounds are generally very water soluble, with the exception of caesium alkyl and arylcompounds, which have low water solubility. Caesium cations have low hydration energy and can react with clay minerals,zeolites, or soils with a high percentage of exchangeable potassium, forming insoluble, immobile complexes. Under normalenvironmental conditions, Cs cations are neither degraded nor transformed, but may adsorb to suspended solids andsediment in the water column, forming insoluble complexes.Since caesium does not volatilise from water, transport of caesium from water to the atmosphere is not considered likely,except by windblown sea sprays. Most of the caesium released to water will adsorb to suspended solids in the water columnand ultimately be deposited in the sediment core. Caesium can also bioconcentrate and has been shown to bioaccumulate inboth terrestrial and aquatic food chains. Mean bioconcentration factors (BCF) for 137Cs of 146, 124, and 63 were reported forfish, brown macroalgae, and molluscs, respectively. The levels of 137Cs in lake trout from Great Slave Lake, Canada wereconsistently higher than levels found in food sources and a biomagnification factor of 1.9 was calculated for lake trout, relativeto their food sources. It was shown that the bioconcentration and bioaccumulation of 137Cs by aquatic organisms issignificantly reduced in waters with a large humic content and high levels of potassium cations.In soil surfaces, caesium has low mobility in comparison to other metals and usually does not migrate below a depth of 40 cm.The major portion of caesium is retained in the upper 20 cm of the soil surface. Studies have reported that clay and zeoliteminerals strongly bind caesium cations and can therefore reduce the bioavailability of caesium and the uptake in plants byirreversibly binding caesium in interlayer positions of the clay particles. Soils rich in organic matter adsorb caesium, but thecesium adsorbed in the organic fraction is readily exchangeable and highly available for plant uptake. DO NOT discharge into sewer or waterways.EcotoxicityIngredientcaesium chloridePersistence: Water/SoilHIGHPersistence: AirBioaccumulationLOWMobilityHIGHSection 13 - DISPOSAL CONSIDERATIONSDisposal InstructionsAll waste must be handled in accordance with local, state and federal regulations. Puncture containers to prevent re-use and bury at an authorized landfill.Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each